Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trop Med Infect Dis ; 8(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36828529

RESUMO

Vancomycin is used for the treatment of bone and joint infections (BJI), but scarce information is available about its pharmacokinetic/pharmacodynamic (PK/PD) characteristics. We aimed to identify the risk factors associated with the non-achievement of an optimal PK/PD target in the first therapeutic drug monitoring (TDM). Methods: A retrospective study was conducted in a tertiary hospital from January 2020 to January 2022. Patients with BJI and TDM of vancomycin on day 2 of treatment were included. Initial vancomycin fixed doses (1 g every 8 h or 12 h) was decided by the responsible doctors. According to TDM results, dosage adjustments were performed. An AUC24h/MIC < 400 mg × h/L, between 400 and 600 mg × h/L and >600 mg × h/L, were defined as suboptimal, optimal and supratherapeutic, respectively. Patients were grouped into these three categories. Demographic, clinical and PK characteristics were compared between groups. Nephrotoxicity at the end of treatment was assessed. Results: A total of 94 patients were included: 22 (23.4%), 42 (44.7%) and 30 (31.9%) presented an infratherapeutic, optimal and supratherapeutic PK/PD targets, respectively. A younger age and initial vancomycin dose <40 mg/kg/day were predictive factors for achieving a suboptimal PK/PD target, while older age, higher serum-creatinine and dose >40 mg/kg/day were associated with overexposure. The nephrotoxicity rate was 22.7%. More than 50% of patients did not achieve an optimal PK/PD. Considering age, baseline serum-creatinine and body weight, TDM is required to readily achieve an optimal and safe exposure.

2.
Vaccines (Basel) ; 10(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36560458

RESUMO

BACKGROUND: Skin local reactions to mRNA COVID-19 vaccines have been linked to the use of vaccine excipients. The aim of the study is to evaluate the role of skin testing excipients in delayed skin reactions due to mRNA COVID-19 vaccines. METHODS: Skin testing among a group of healthcare workers with skin reactions due to mRNA vaccines was performed. Patch testing and intradermal testing (IDT) with polyethylene glycol (PEG)-400, PEG-2000, trometamol, and 1,2-dimyristoyl-sn-glycero-3-phosphocholine were performed. Healthcare workers without skin reactions to vaccines were used for skin testing as controls. RESULTS: Thirty-one healthcare workers (from a total of 4315 vaccinated healthcare workers) experienced cutaneous adverse vaccine reactions. Skin testing was performed in sixteen of the healthcare workers (11 delayed large local reactions (DLLR) and 5 widespread reactions). Positive IDT for PEG-2000 1% in DLLR was seen in 10 (90.9%) patients, in comparison with one (16.6%) individual with a delayed widespread reaction. Delayed positive IDT reactions for PEG-2000 1% on day 2 were observed in three (27.3%) patients with DLLR. Patch testing of the excipients was negative. Among 10 controls, only one exhibited a transient positive IDT reaction to PEG-2000 1%. CONCLUSIONS: Immediate and delayed reactions to IDT are frequently detected in patients with DLLR. The observation of positive delayed intradermal reactions to PEG disclosed only in patients with DLLR reinforces a possible role of PEG in the development of these reactions. Skin testing of other excipients is of little importance in clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...